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Nonlinear ripples of Kelvin–Helmholtz type
which arise from an interfacial mode interaction
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An analysis is made of the small-amplitude capillary–gravity waves which occur on the
interface of two fluids and which arise out of the interaction between the Mth and Nth
harmonics of the fundamental mode. The method employed is that of multiple scales
in both space and time and a pair of coupled nonlinear partial differential equations
for the slowly varying wave amplitudes is derived. These equations describe, correct up
to third order, the progression of a wavetrain and are generalizations of the nonlinear
Schrödinger-type equations used by many authors to model wave propagation. The
equations are solved and formal power series expansions of the corresponding wave
profiles obtained. Many different wave configurations can arise, some symmetric
others asymmetric. It is found that an important influence on the type of waves
which can occur is whether the ratio of the interacting wave modes is greater or
less than two. Finally, an examination of the stability of the waves to plane wave
perturbations is carried out.

1. Introduction
Our purpose in this paper is to make an investigation into the resonant capillary–

gravity waves of Kelvin–Helmholtz type which may arise on the interface of two
semi-infinite stratified fluids which are moving with uniform velocities parallel to
their interface. We shall be concerned with those ripples which are caused by the
interaction of the Mth and Nth harmonics of a fundamental mode. (Here M is
greater than N and for technical reasons to be discussed later it is assumed that M
is not equal to 2N or 3N.) We shall seek small-amplitude travelling waves and will
approach the problem by means of a weakly nonlinear analysis. Our method is to
introduce a small parameter ε, representing the wave steepness, and then to expand
the velocity potentials and wave profile in ascending powers of ε. By assuming the
wave amplitudes are slowly varying in both space and time, we are able to derive
a pair of coupled nonlinear partial differential equations which model the evolution
of the waves, correct up to third order. It turns out that there are four significant
parameters in the problem: M,N, V and ρ. Here V is a measure of the relative
velocities of the fluids and ρ is the ratio of their densities. Solutions to the equations
will be found which correspond to Stokes-type travelling waves and depictions of
the wave profiles are presented. It will be seen that in general, for fixed values of
the parameters, a large variety of wave profiles is possible and both symmetric and
asymmetric waves may occur. However, there are certain values of the parameters
for which only one type of wave is to be found. Having obtained the wave profiles
we then proceed to consider their stability to plane wave perturbations which may be
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at any angle to the direction of propagation. Results will be presented which show
how the stability is affected by changes in the velocity and density parameters (for
fixed values of the wave harmonics) and also by changes in the values of M and N
(for fixed values of the remaining parameters).

The topic of mode interactions between different harmonics of water waves in an
open channel (and indeed in other physical systems) has received much attention
during this century. A seminal paper is that of Wilton (1915) who drew attention
to the fact that a wave and its second harmonic may travel at the same speed,
thereby producing a resonant interaction. This work was extended somewhat by
Pierson & Fife (1961) who obtained results for deep-water Wilton ripples valid up
to second order and Nayfeh (1970) who considered finite-depth waves and produced
results valid to third order. Later Nayfeh (1971) went on to consider third-order
resonances, but the first quite general analysis of resonant capillary–gravity waves
was that undertaken by Chen & Saffman (1979). They undertook a formal analysis of
the waves formed by interactions between the Mth and Nth harmonics and obtained
a comprehensive description of the different wave configurations which are possible.
Later, Toland & Jones (1985) and Jones & Toland (1986) performed a rigorous
mathematical analysis of the problem by transforming it into an integral equation
and using the techniques of modern functional analysis and bifurcation theory. In
this way they vindicated most of Chen & Saffman’s conclusions. Their work was
extended somewhat by Aston (1991) who considered the case when the interaction
takes place between the fundamental and one of its higher harmonics. All the studies
mentioned so far have been, to a greater or lesser extent, analytic but there have
been some purely numerical studies of the capillary–gravity wave problem. Chen &
Saffman (1980) used numerical techniques to investigate finite-amplitude capillary–
gravity waves and a similar investigation was made by Schwartz & Vanden-Broeck
(1979). Much later Aston (1993) used numerical methods to provide an extensive
description of a very large number of travelling wave solutions to the capillary–
gravity wave mode interaction problem, including some new branches which are not
connected to the trivial solution.

The stability of waves in an open channel has also been the subject of extensive
study over the years although it is only comparatively recently that attention has
been focused on the stability of resonant waves. Much work on wave stability has
stemmed from the pioneering research of Benjamin & Feir (1967) who showed how
a progressive gravity wavetrain is unstable in the presence of sidebands. However
it was not until considerably later, in the work of Bridges & Mielke (1995), that a
rigorous proof of this instability was given. Another result of major significance in
this area is that of Zakharov (1968) who was the first to show that the evolution of a
wavetrain may be described up to third order by a nonlinear Schrödinger equation.
Zakharov’s work dealt with gravity waves on deep water and his results have been
the subject of many generalizations. Davey & Stewartson (1974) considered gravity
waves in a channel of finite depth while Djordjevic & Redekopp (1977) took surface
tension effects into account. Jones (1992, 1993, 1994a) derived the equations modelling
the situation for various different types of resonance and in addition considered the
stability of the waves which arise in these cases.

The studies mentioned above all dealt with flow in an open channel and subject
to constant atmospheric pressure. However flows in stratified fluids have, of course,
attracted the attention of many researchers over the years. One of the best known
and most important results is the classical Kelvin–Helmholtz instability (see, for
instance Chandrasekhar 1961 or Craik 1985). A comprehensive investigation into
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Figure 1. The flow configuration.

the stability of non-resonant interfacial waves between two bounded fluids was made
by Christodoulides & Dias (1995). They used both variational techniques and the
method of multiple scales to attack the problem and sought both travelling waves
and standing waves. Nayfeh & Saric (1972) used the method of multiple scales
to investigate the nonlinear stability of a wavetrain at the interface of two fluids.
Mostly, their work was concerned with non-resonant waves but they did include some
results on second-harmonic resonance. The instability of second-harmonic resonant
interfacial waves has also been the subject of recent studies by Bontozoglou &
Hanratty (1990) and Christodoulides & Dias (1994). Both of these studies made
use of a Lagrangian formulation based on that of Miles (1986a, b) and employed a
combination of analytic and numerical techniques.

2. Problem formulation
Under consideration is the irrotational motion of two semi-infinite stratified inviscid

incompressible fluids. We introduce a three-dimensional Cartesian coordinate system
so when the motion is undisturbed the interface of the fluids is given by the plane
z = 0 and gravity acts in the negative z-direction. We assume that the lower fluid
(that occupying z 6 0) has density ρ1, while the upper fluid (that occupying z > 0)
has density ρ2, where ρ2 6 ρ1 so the lighter fluid is on top. We further assume that
when the motion is undisturbed the fluids are moving in the x-direction with uniform
horizontal velocities U1 and U2 (see figure 1).

Then since the motion is supposed to be irrotational we may introduce potential
functions φj(x, y, z, t) (j = 1, 2) describing the perturbed flow so that the total
potential for the motion is

φ′j(x, y, z, t) = Ujx+ φj(x, y, z, t).

We further introduce a function η(x, y, t) so that the interface of the fluids is given by
z = η(x, y, t). Then the equations which describe the motion are

∇2φ1 = 0, z 6 η, ∇2φ2 = 0, z > η, (2.1a,b)

φ1 → 0, z → −∞; φ2 → 0, z →∞, (2.1c,d)

ηt − φjz +Ujηx + φjxηx + φjyηy = 0, z = η, j = 1, 2, (2.1e)

ρφ2t − φ1t + ρU2φ2x −U1φ1x + (ρ− 1)gη + 1
2
ρ(φ2

2x + φ2
2y + φ2

2z)− 1
2
(φ2

1x + φ2
1y + φ2

1z)

+
S

ρ1

(ηxx(1 + η2
y) + ηyy(1 + η2

x)− 2ηxηyηxy)

(1 + η2
x + η2

y)
3/2

= 0, z = η. (2.1f)
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Here S denotes surface tension, g the force of gravity and ρ = ρ2/ρ1. The conditions
(2.1e) are the usual kinematic conditions on the interface and (2.1f) arises from
applying Bernoulli’s condition there.

We are interested in small-amplitude sinusoidal disturbances which are formed by
the interaction of the Mth and Nth harmonics of a fundamental mode. As a first
step we linearize the boundary conditions (2.1e, f) about the zero solution to obtain

ηt − φjz +Ujηx = 0, z = 0, (2.2a)

ρφ2t − φ1t + ρU2φ2x −U1φ1x + (ρ− 1)gη +
S

ρ1

(ηxx + ηyy) = 0, z = 0. (2.2b)

We shall seek solutions to these equations which are independent of y, so that to a
first approximation the perturbed flow is in the same direction as the laminar flow.
It is then a routine exercise to verify that for any distinct positive integers M and N,
the functions

φ1 =
i

k
(U1k − ω)ein(kx−ωt)+nkz, (2.3a)

φ2 = − i

k
(U2k − ω)ein(kx−ωt)−nkz, (2.3b)

η = ein(kx−ωt), n = M,N (2.3c)

are solutions to (2.2) provided

S

ρ1

=
(1− ρ)g

MNk2
(2.4a)

and

ρ(U2k − ω)2 + (U1k − ω)2 =
gk(1− ρ)(M +N)

MN
. (2.4b)

Equation (2.4b) has the solutions

ω =
kMN(U1 + ρU2)± [MN(M +N)gk(1− ρ2)−M2N2ρk2(U1 −U2)

2]1/2

MN(ρ+ 1)
, (2.4c)

and hence the waves are stable if the values of ω are real. Thus the flow is stable
when the term under the square root sign is positive, i.e. provided

(U1 −U2)
2 <

g

ρk
(1− ρ2)

(
1

M
+

1

N

)
. (2.4d)

This is the classical result of linear Kelvin–Helmholtz instability theory. Henceforth
we assume that condition (2.4d) (as well as (2.4a, b)) is satisfied. This should not
restrict the values of U1 and U2 because of the right-hand side of (2.4d) can be made
arbitrarily large by choosing k, the wavenumber, to be sufficiently small. In any case,
as we shall see, it is the ratio of the velocities which is the most significant parameter.
(It might be worth remarking that a further avenue for research would be a study of
the waves which occur when the parameters are perturbed slightly from their critical
values.) Our aim is now to develop a weakly nonlinear theory for a wave whose
wavenumber, frequency and amplitude are all temporal and spacial slowly varying
functions. To facilitate this we introduce a parameter ε which satisfies |ε| � 1 and
represents the order of magnitude of the steepness of the wave. To simplify the
algebra we scale the length coordinate so that the wavenumber is equal to unity. We
also introduce the slow variables X = εx, Y = εy, T = εt, T1 = ε2t and in addition
set E(n) = ein(x−ωt) for any n > 1 and put Vj = Uj − ω for j = 1, 2.
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It is our ultimate intention to derive a pair of nonlinear equations which model up
to cubic order the progression of a weakly nonlinear wave caused by the interaction
of the Mth and Nth harmonic of the fundamental. To achieve this it is necessary to
develop φj(j = 1, 2) and η in ascending powers of ε. Retaining relevant terms and
bearing in mind (2.1a, b), it follows that

φ1 = ε
[
iV1CN + ε(A(2)

N + zV1CNX)

+ε2(A(3)
N − izA(2)

NX −
izV1

2N
CNY Y −

iz2

2
V1CNXX)

]
E(N)eNz

+ε
[
iV1CM + ε(A(2)

M + zV1CMX)

+ε2(A(3)
M − izA(2)

MX −
izV1

2M
CMYY −

iz2

2
V1CMXX)

]
E(M)eMz

+ε2A(M +N)E(M +N)e(M+N)z + ε2A(M −N)E(M −N)e(M−N)z

+ε2A(2N)E(2N)e2Nz + ε2A(2M)E(2M)e2Mz + (c.c.), (2.5a)

φ2 = ε
[
−iV2CN + ε(B(2)

N + zV2CNX)

+ε2(B(3)
N + izB(2)

NX −
izV2

2N
CNY Y +

iz2

2
V2CNXX

]
E(N)e−Nz

+ε
[
−iV2CM + ε(B(2)

M + zV2CMX)

+ε2(B(3)
M + izB(2)

MX −
izV2

2M
CMYY +

iz2

2
V2CMXX

]
E(M)e−Mz

+ε2B(M +N)E(M +N)e−(M+N)z + ε2B(M −N)E(M −N)e−(M−N)z

+ε2B(2N)E(2N)e−2Nz + ε2B(2M)E(2M)e−2Mz + (c.c.), (2.5b)

η = ε(CN + εC
(2)
N + ε2C

(3)
N )E(N) + ε(CM + εC

(2)
M + ε2C

(3)
M )E(M)

+ε2C(M +N)E(M +N) + ε2C(M −N)E(M −N)

+ε2C(2N)E(2N) + ε2C(2M)E(2M) + (c.c.) (2.5c)

In the expansions (2.5) the coefficients A(j)
i , B

(j)
i , Ci etc. are functions of the slow

variables X,Y , T , T1 only and (c.c.) stands for complex conjugate. We assume
without loss of generality that M > N and also we assume that M 6= 2N or 3N. The
reason for this is that the expansions (2.5) take on slightly different forms in these
cases, which we hope to consider elsewhere. The next step is the rather tedious one
of substituting (2.5) into the boundary conditions (2.1e, f) and matching ascending
powers of ε. This task is made somewhat easier if (2.1e, f) are expanded about z = 0.
If this is done they become, to the relevant order and bearing in mind that the
conditions (2.4) hold,

ηt−φjz+(Vj+ω)ηx−ηφjzz+ηxφjx− 1
2
η2φjzzz+ηηxφjxz = 0, z = 0, j = 1, 2 (2.6a)

and

ρφ2t − φ1t + ρ(V2 + ω)φ2x − (V1 + ω)φ1x −
MN

M +N
(V 2

1 + ρV 2
2 )η

+
(V 2

1 + ρV 2
2 )

M +N
(ηxx + ηyy) + ρηφ2tz − ηφ1tz
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+ ρ(V2 + ω)ηφ2xz − (V1 + ω)ηφ1xz + 1
2
ρ(φ2

2x + φ2
2z)

− 1
2
(φ2

1x + φ2
1z) + 1

2
ρη2φ2tzz + ρηφ2xφ2xz

+ ρηφ2zφ2zz + 1
2
ρ(V2 + ω)η2φ2xzz

− 1
2
η2φ1tzz − ηφ1xφ1xz − ηφ1zφ1zz − 1

2
(V1 + ω)η2φ1xzz −

3(V 2
1 + ρV 2

2 )

2(M +N)
η2
xηxx = 0.

(2.6b)

These expansions should actually contain some terms involving y-derivatives. How-
ever since in the expansions (2.5) y only occurs as a slow variable they contribute
nothing at the relevant order and consequently are omitted. It now turns out that the
terms of order ε are already matched by choice of the leading-order terms in (2.5).
When we come to match the terms of order ε2E(2N), the kinematic conditions give

A(2N)− iV1C(2N) + iNV1C
2
N = 0, (2.7a)

B(2N) + iV2C(2N) + iNV2C
2
N = 0, (2.7b)

while Bernoulli’s gives

2iV1A(2N)−2iρV2B(2N)+
(M + 4N)

(M +N)
(V 2

1 +ρV 2
2 )C(2N)+N(ρV 2

2 −V 2
1 )C2

N = 0. (2.7c)

Solving yields

A(2N) =
iV1N(3NV 2

1 + ρ(N − 2M)V 2
2 )

(M − 2N)(V 2
1 + ρV 2

2 )
C2
N, (2.8a)

B(2N) =
iV2N(3ρNV 2

2 + (N − 2M)V 2
1 )

(M − 2N)(V 2
1 + ρV 2

2 )
C2
N, (2.8b)

C(2N) =
N(M +N)(V 2

1 − ρV 2
2 )

(M − 2N)(V 2
1 + ρV 2

2 )
C2
N. (2.8c)

Consideration of other terms at the quadratic level leads us to

A(2M) =
iV1M(3MV 2

1 + (M − 2N)ρV 2
2 )

(N − 2M)(V 2
1 + ρV 2

2 )
C2
M, (2.9a)

B(2M) =
iV2M(3ρMV 2

2 + (M − 2N)V 2
1 )

(N − 2M)(V 2
1 + ρV 2

2 )
C2
M, (2.9b)

C(2M) =
M(M +N)(V 2

1 − ρV 2
2 )

(N − 2M)(V 2
1 + ρV 2

2 )
C2
M, (2.9c)

A(M +N) =
iV1(M +N)(ρV 2

2 − 3V 2
1 )

(V 2
1 + ρV 2

2 )
CMCN, (2.10a)

B(M +N) =
iV2(M +N)(V 2

1 − 3ρV 2
2 )

(V 2
1 + ρV 2

2 )
CMCN, (2.10b)

C(M +N) =
2(M +N)(ρV 2

2 − V 2
1 )

(V 2
1 + ρV 2

2 )
CMCN, (2.10c)

A(M −N) =
iV1(M +N)(MV 2

1 + (4N − 3M)ρV 2
2 )

(M − 2N)(V 2
1 + ρV 2

2 )
CMC

∗
N, (2.11a)
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B(M −N) =
iV2(M +N)((4N − 3M)V 2

1 +MρV 2
2 )

(M − 2N)(V 2
1 + ρV 2

2 )
CMC

∗
N, (2.11b)

C(M −N) =
2(M2 −N2)(V 2

1 − ρV 2
2 )

(M − 2N)(V 2
1 + ρV 2

2 )
CMC

∗
N. (2.11c)

(The asterisk stands for complex conjugate.) When the terms of the form ε2E(N) are
considered, the kinematic conditions give

NA
(2)
N − iNV1C

(2)
N − CNT − ωCNX = 0, (2.12a)

NB
(2)
N + iNV2C

(2)
N + CNT + ωCNX = 0, (2.12b)

while Bernoulli’s yields

iNV1A
(2)
N − iρNV2B

(2)
N +N(V 2

1 + ρV 2
2 )C (2)

N + i(V1 + ρV2)CNT

+
i((M −N)(V 2

1 + ρV 2
2 ) + ω(M +N)(V1 + ρV2))

(M +N)
CNX = 0. (2.12c)

Eliminating A(2)
N and B(2)

N between these three equations then leads to the result that

CNT = s(N,M)CNX (2.13a)

where

s(N,M) =
(N −M)(V 2

1 + ρV 2
2 )− 2ω(M +N)(V1 + ρV2)

2(M +N)(V1 + ρV2)
(2.13b)

which in turn means that

A
(2)
N = iV1C

(2)
N +

(N −M)(V 2
1 + ρV 2

2 )

2N(M +N)(V1 + ρV2)
CNX (2.14a)

and

B
(2)
N = −iV2C

(2)
N +

(M −N)(V 2
1 + ρV 2

2 )

2N(M +N)(V1 + ρV2)
CNX. (2.14b)

(It should be noted that here and elsewhere the analysis breaks down when V1 +ρV2 is
zero, in which case certain terms become singular. However, this simply corresponds
to the onset of the Kelvin–Helmholtz instability, for it may easily be seen from (2.4c)
that as V1 +ρV2 passes through zero, the roots of (2.4c) change from real to complex.)
Consideration of the terms in ε2E(M) yields the analogous relations:

CMT = s(M,N)CMX, (2.15)

A
(2)
M = iV1C

(2)
M +

(M −N)(V 2
1 + ρV 2

2 )

2M(M +N)(V1 + ρV2)
CMX, (2.16a)

B
(2)
M = −iV2C

(2)
M +

(N −M)(V 2
1 + ρV 2

2 )

2M(M +N)(V1 + ρV2)
CMX. (2.16b)

At the cubic order, we must now consider terms of the form ε3E(N). The kinematic
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terms yield

CNT1
+ C

(2)
NT + (V1 + ω)C (2)

NX + iNV1C
(3)
N −NA

(3)
N

+ iA(2)
NX + (iV1/2N)CNY Y − 2N2A(2N)C∗N

− iN2V1C(2N)C∗N −N(M +N)A(M +N)C∗M
− iMNV1C(M +N)C∗M +N(M −N)A∗(M −N)CM

− iMNV1C
∗(M −N)CM − 3

2
iN3V1|CN |2CN − iN(N2 + 2M2)V1|CM |2CN = 0

(2.17a)

and

CNT1
+ C

(2)
NT + (V2 + ω)C (2)

NX + iNV2C
(3)
N

+ NB
(3)
N − iB(2)

NX + (iV2/2N)CNY Y − 2N2B(2N)C∗N
+ iN2V2C(2N)C∗N −N(M +N)B(M +N)C∗M
+ iMNV2C(M +N)C∗M +N(M −N)B∗(M −N)CM

+ iMNV2C
∗(M −N)CM − 3

2
iN3V2|CN |2CN − iN(N2 + 2M2)V2|CM |2CN = 0,

(2.17b)

while the Bernoulli condition yields

iρNV2B
(3)
N − iNV1A

(3)
N −N(V 2

1 + ρV 2
2 )C (3)

N

− i(V1 + ρV2)CNT1
+ ρ(V2 + ω)B(2)

NX − (V1 + ω)A(2)
NX

+ ρB
(2)
NT − A

(2)
NT +

2iN

M +N
(V 2

1 + ρV 2
2 )C (2)

NX

+
(V 2

1 + ρV 2
2 )

M +N
CNXX +

(V 2
1 + ρV 2

2 )

M +N
CNY Y +N2(V 2

1 − ρV 2
2 )C(2N)C∗N

+ i(M2 −N2)V1A(M +N)C∗M + iρ(M2 −N2)V2B(M +N)C∗M
+ M2(V 2

1 − ρV 2
2 )C(M +N)C∗M

+ i(N2 −M2)V1A
∗(M −N)CM + iρ(N2 −M2)V2B

∗(M −N)CM

+ M2(V 2
1 − ρV 2

2 )C∗(M −N)CM

− 5
2
N3(V 2

1 + ρV 2
2 )|CN |2CN +

3

2

N4

(M +N)
(V 2

1 + ρV 2
2 )|CN |2CN

+ (N3 − 2M2N − 2MN2 − 2M3)(V 2
1 + ρV 2

2 )|CM |2CN

+
3M2N2

M +N
(V 2

1 + ρV 2
2 )|CM |2CN = 0. (2.17c)

(These and certain other calculations were accomplished with the help of mathe-

matica.) The next step in the procedure is to use (2.17b) to substitute for A(3)
N and

B
(3)
N in (2.17c).
The resulting equation is

−2i(V1 + ρV2)CNT1
− ωA(2)

NX − ρωB
(2)
NX

+
i

(M +N)
{(N −M)(V 2

1 + ρV 2
2 )− ω(M +N)(V1 + ρV2)}C (2)

NX

−A(2)
NT + ρB

(2)
NT − i(V1 + ρV2)C

(2)
NT +

(V 2
1 + ρV 2

2 )

M +N
CNXX +

(M + 3N)

2N(M +N)
(V 2

1 + ρV 2
2 )CNY Y

+2iN2(V1A(2N) + ρV2B(2N))C∗N
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+iM(M +N)(V1A(M +N) + ρV2B(M +N))C∗M
+M(M −N)(V 2

1 − ρV 2
2 )C(M +N)C∗M

+i(N −M)(M + 2N)(V1A
∗(M −N) + ρV2B

∗(M −N))CM

+M(M −N)(V 2
1 − ρV 2

2 )C∗(M −N)CM − 4N3(V 2
1 + ρV 2

2 )|CN |2CN
−M(2M2 + 4MN + 2N2)(V 2

1 + ρV 2
2 )|CM |2CN

+
3N2

2(M +N)
(V 2

1 + ρV 2
2 )(N2|CN |2CN + 2M2|CM |2CN) = 0. (2.18)

Now we can use (2.13) and (2.14) to simplify the linear terms in (2.18). They become

−2i(V1 + ρV2)CNT1
− 2i(V1 + ρV2)C

(2)
NT

+
i

M +N
{(N −M)(V 2

1 + ρV 2
2 )− 2ω(M +N)(V1 + ρV2)}C (2)

NX

+

{
(V 2

1 + ρV 2
2 )

M +N
− (1 + ρ)(M −N)2(V 2

1 + ρV 2
2 )2

4N(M +N)2(V1 + ρV2)2

}
CNXX

+
(M + 3N)(V 2

1 + ρV 2
2 )

2N(M +N)
CNY Y , (2.19)

where we have used (2.13) and its derivatives to write CNXT and CNTT in terms of
CNXX . If we now look at (2.14a), we see that A(2)

N − iV1C
(2)
N is a constant multiple

of CNX . Hence it would not seem unreasonable to make the ansatz that C (2)
N and

A
(2)
N each separately satisfy the relationship (2.13a) and as a consequence the terms

involving C
(2)
N vanish from (2.19). This means that the evolution equations, which

will be presented shortly, take on a somewhat simpler form. It would be possible to
proceed without this assumption at the expense of a somewhat more complicated set
of evolution equations. However, this would not really lead to any great generalization
for reasons which are discussed at the end of §3. The nonlinear terms in (2.18) can
be simplified by use of (2.8)–(2.11) whereby an equation for CN and CM is obtained.
Clearly an analogous consideration of the terms of the form ε3E(M) yields a similar
equation. Both equations can be simplified by introducing a new parameter V defined
as V2/V1 and scaling T1 to T1/V1. The final result of these calculations is the system

iCMT1
+ u(M,N)CMXX + v(M,N)CMY Y + p(M,N)|CM |2CM + q(M,N)|CN |2CM = 0,

(2.20a)

iCNT1
+ u(N,M)CNXX + v(N,M)CNY Y + p(N,M)|CN |2CN + q(M,N)|CM |2CN = 0,

(2.20b)
where the coefficients are given by

u(M,N) =
(1 + ρV 2){(N2 − 6MN − 3M2 + ρ(M −N)2)(1 + ρV 2)− 8ρM(M +N)V }

8M(M +N)2(1 + ρV )3
,

(2.21a)

v(M,N) =
−(3M +N)(1 + ρV 2)

4M(M +N)(1 + ρV )
, (2.21b)

p(M,N) =
M3{(8N2 +MN + 2M2)(1 + ρ2V 4)− 6M(5N + 2M)ρV 2}

4(N − 2M)(M +N)(1 + ρV 2)(1 + ρV )
, (2.21c)

q(M,N) =
N2{M(2N2+10MN−M2)(1+ρ2V 4)−2(8N3+14MN2−2M2N+M3)ρV 2}

2(M − 2N)(M +N)(1 + ρV 2)(1 + ρV )
.

(2.21d)
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The pair of coupled nonlinear partial differential equations (2.20) model, up to cubic
order, the evolution of a capillary–gravity wavetrain occurring on the interface of
two semi-infinite stratified fluids and caused by the interaction of the Mth and Nth
harmonics of a fundamental mode. They are not valid when M = 2N (when two
of the coefficients become singular) or M = 3N. The reason for this latter exclusion
is that the terms 2M, 2N,M ± N are not all distinct and so the expansions (2.5)
take a rather different form. Also some additional terms have to be adjoined to
the evolution equations in this case, for instance (2.20a) would contain terms of the
form A3

N . It would, of course, be possible to take the analysis to a higher order.
There are a number of reasons why we do not do this. One is that equations of the
cubic nonlinear Schrödinger type have proved highly successful in predicting wave
evolution over the last thirty years or so. Another is that it is generally thought that
the lowest-order resonant interaction is the one which will dominate (see Hammack
& Henderson 1993). Finally, on purely practical grounds, an extraordinary amount of
additional work would be needed, even to take the analysis to fourth order, although
a few researchers have undertaken such studies, see Dysthe (1979), Jones (1994b),
Trulsen & Dysthe (1996). There are four parameters in the equations: the mode
numbers M and N; V which is a measure of the ratio of the velocities and ρ which is
the ratio of the densities. The equations are a generalization of another coupled pair
occurring in Jones (1993, 1994a) which model the evolution of the analogous waves
in the situation when the upper fluid is absent. They reduce to these equations in
the case ρV = 0. The equations in Jones (1993, 1994a) are themselves generalizations
of the single nonlinear Schrödinger equation used by many authors to model the
motion in the non-resonant case (see for instance Zakharov 1968; Hasimoto & Ono
1972).

3. Nonlinear wavetrains
It is an easy exercise to verify that the system (2.20) admits the Stokes wave

solutions:

CN = A0 exp{iN(`A0X + γA2
0T1)}, (3.1a)

CM = ±λ1/2A0 exp{iM(`A0X + γA2
0T1)}, (3.1b)

where ` and A0 are arbitrary real constants. The quantity λ is given by

λ =
Nq(M,N)−Mp(N,M) + `2MN(Nu(N,M)−Mu(M,N))

Mq(M,N)−Np(M,N)
(3.2a)

=
(2M −N)(2N −M)

Mr(M,N)

{
N2(M(10M +N)(1 + ρ2V 4) + (4M2 − 30MN − 16N2)ρV 2)

− 2`2M(M −N)(1 + ρV 2)2(1 + 2ρV + ρV 2)

(1 + ρV )2

}
(3.2b)

where

r(M,N) = (2− 12ρV 2 + 2ρ2V 4)M5 − (7 + 14ρV 2 + 7ρ2V 4)M4N

+(48 + 80ρV 2 + 48ρ2V 4)M3N2 − (28 + 120ρV 2 + 28ρ2V 4)M2N3

−(4 + 8ρV 2 + 4ρ2V 4)MN4 + 32ρV 2N5. (3.2c)
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The other quantity γ is given by

γ =
q(M,N)2 − p(N,M)p(M,N) + `2(N2u(N,M)p(M,N)−M2u(M,N)q(M,N))

Mq(M,N)−Np(M,N)
.

(3.3)

(If λ is negative we define λ1/2 in (3.1b) to have positive imaginary part. The algebraic
formula for γ is omitted because it is somewhat complicated and not of especial
importance.) Because of the ± sign in (3.1b) we see that for given values of the
parameters, two solutions are possible for given values of the parameters. Physically
the one with the minus sign may be regarded as the one with the plus sign modified by
a ‘phase lag’ of π/(γA2

0M). The corresponding expression (2.5c) for η, the sinusoidal
wave profile, may then be obtained using (2.7)–(2.11). We remark that the expansion
is not uniquely determined since the coefficients C (2)

N and C
(2)
M occurring in η are

arbitrary. We shall set them equal to zero. (For a discussion of this point see the end
of the section.) A calculation reveals that when λ is positive, the corresponding wave
profile is, up to second order,

η = ε cosNχ± ελ1/2 cosMχ± ε2λ1/2(M +N)
(ρV 2 − 1)

(ρV 2 + 1)
cos(M +N)χ

±ε2λ1/2 (M2 −N2)(1− ρV 2)

(M − 2N)(1 + ρV 2)
cos(M −N)χ

+
ε2N(M +N)(1− ρV 2)

(M − 2N)(1 + ρV 2)
cos 2Nχ+ ε2λ

M(M +N)(1− ρV 2)

2(2M −N)(1 + ρV 2)
cos 2Mχ, (3.4a)

while when λ is negative it is

η = ε cosNχ∓ ε|λ|1/2 sinMχ± ε2|λ|1/2(M +N)
(1− ρV 2)

(1 + ρV 2)
sin(M +N)χ

∓ε2|λ|1/2 (M2 −N2)(1− ρV 2)

(M − 2N)(1 + ρV 2)
sin(M −N)χ+ ε2 N(M +N)(1− ρV 2)

2(M − 2N)(1 + ρV 2)
cos 2Nχ

+ε2λ
M(M +N)(1− ρV 2)

2(N − 2M)(1 + ρV 2)
cos 2Mχ. (3.4b)

(In these expansions χ = x − ωt + 1
2
`X + 1

4
γT1 and we have normalized by setting

A0 = 1
2
.) Let us make some observations concerning the types of wave profiles which

may arise. First note that it is sufficient to consider (3.4) when t = 0, for fixing t
at some different non-zero value merely amounts to a horizontal translation of the
origin but does not alter the appearance of the wave. We then see that when λ is
positive and so the wave profile is given by (3.4a), the wavetrain is symmetric in the
sense that η(x) = η(−x) while when λ is negative and the profile is given by (3.4b),
no such symmetry is present. It is of interest to see how the values of the parameters
determine the shape of the waves. We shall first consider the situation when the
parameter ` is set equal to zero. Observe first that this means that λ may now be
regarded as a function of two variables: ρV 2 and the ratio R = M/N. Of course we
must have ρV 2 > 0 and R > 1. Then the term in the curly brackets in (3.2b) may be
regarded as a quadratic in ρV 2 whose coefficients are functions of R:

(10R + 1)R(ρV 2)2 + (4R2 − 30R − 16)ρV 2 + (10R + 1)R. (3.5)
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Figure 2. The sign of λ ((3.2) when ` = 0) in the (R, ρV 2)-plane where R = M/N;
(b) is an enlargement of the left side of (a).

If we set this equal to zero and solve for ρV 2, we discover that it has the relatively
simple solution

ρV 2 =
(2R + 1)(8− R)± 4(1 + R)(4 + 7R − 6R2)1/2

(10R + 1)R
. (3.6)

The term under the square root is easily found to vanish when R = 1
12

(7 +
√

145) ∼
1.586 (the only relevant value for our purposes). Hence if R > 1.586 we conclude
that (3.5) is always positive, while if 1 < R < 1.586 then (3.5) has two real zeros both
of which, a calculation shows, are always positive. Hence in this latter case, we can
arrange for (3.5) to have either sign by judicious choice of ρV 2.

The denominator r(M,N) in (3.2b) may be similarly dealt with by writing it as

(1+(ρV 2)2)(2R5−7R4+48R3−28R2−4R)+ρV 2(32−8R−120R2+80R3−14R4−12R5),
(3.7)

again being regarded as a quadratic in ρV 2. Solving this leads us to

ρV 2 = {R(2R4 − 7R3 + 48R2 − 28R − 4)}−1{(6R5 + 7R4 − 40R3 + 60R2 + 4R − 16)

±4(R + 1)[(R − 2)(2R − 1)(R3 − 2R2 + 4R − 2)(R3 + 6R2 − 8R − 4)]1/2}. (3.8)

A calculation now shows that the discriminant vanishes when R = 2 and R ∼ 1.446
(for R > 1). We therefore conclude that for all values of R not between 1.446 and
2 the expression (3.7) vanishes for two values of ρV 2 both of which, a calculation
shows, are always positive. The zeros and signs of (3.5) and (3.7), and hence of λ, in
the (R, ρV 2) plane are depicted in figure 2.
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Figure 3. Some of the wave profiles for selected values of the parameters. The symmetric profiles
are given by (3.4a) and the asymmetric ones by (3.4b). In all cases the top sign has been taken and
we have set ε equal to 0.2. Here we have held M = 5 and N = 4 fixed and allowed ρV 2 to vary. Each
choice corresponds to a different region in figure 2. (a) ρV 2 = 0.4, (b) 0.5, (c) 1.5, (d) 2.0, (e) 3.0.

We conclude that the sign of λ needs to be considered in the four regions:
1 < R < 1.446, 1.446 < R < 1.586, 1.586 < R < 2, R > 2. In all but the third of
these regions λ can be positive or negative according to the value of ρV 2 and hence
both symmetric and asymmetric waves may arise. In the third region λ is always
positive so only symmetric waves can arise. Some of the wave profiles for values of
the parameters in the different regions are depicted in figures 3 and 4.

Finally we remark on the significance of the parameter `. It is not hard to see from
(3.2b) that if that part of λ independent of ` and that part multiplying `2 have the same
sign, then increasing `2 from zero has no effect on the symmetries of the waves. If, on
the other hand, they have different signs, then increasing `2 will lead to a reversal in the
symmetries of the waves. We conclude with some examples to show that all four sign
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Figure 4. Wave profiles when ρV 2 is held fixed at 2.5 and R is allowed to vary. As before we have
taken the top sign and ε = 0.2. (a) M = 4, N = 1; (b) M = 7, N = 3; (c) M = 5, N = 3.

choices can occur: if M = 7 and N = 5, then for (V , ρ) = (1, 0.6), (2, 0.5), (1.3, 0.5) the
values of λ are −0.169−0.0138`2, 0.0735−0.00792`2 and 4.051 + 0.112`2 respectively,
while if M = 4, N = 1, V = 0.1, ρ = 0.8 then λ = −0.207 + 0.0309`2.

We conclude this section with some observations about generalizations of the
evolution equations (2.20). Suppose, in particular, that we had not made the ansatz
that C (2)

N satisfies (2.13a). This would mean that equation (2.20b) would contain

additional terms proportional to C (2)
NT − s(N,M)C (2)

NX . (These and subsequent remarks

apply mutatis mutandis to C
(2)
M and (2.20a).) One consequence of this would be that

(2.20) would no longer be a closed system but would now consist of two equations
for four unknowns. (Although this would not be a terribly serious consequence, and
note that even under our assumptions, C (2)

N and C
(2)
M are not uniquely determined.)

The simplest way of dealing with these modified evolution equations is then to take
CM and CN as in (3.1) and to take C (2)

M and C (2)
N to be constants. Indeed, we see from

(3.4) that the wave profile is only determined up to O(ε2), so at this order any slow
variation in C

(2)
N and C

(2)
M is negligible. Then since physically we are concerned with

waves arising from an interaction between the Mth and Nth modes, the most natural
choice for the constants is zero. Any non-zero choice would just be superimposing a
‘free wave’ of mode M or N on the flow which is mathematically an O(ε2) solution of
the linearized problem and would not interact at all at this level. Indeed some authors
insist from the outset that in the perturbation expansion of η, the only coefficient of
the Mth and Nth modes is the leading one of order ε (see Nayfeh 1970). In any case,
it can easily be seen from the expansions (2.5c) and (3.4) of the wave profiles that the
values of C (2)

M and C (2)
N have no qualitative effect on the form of the waves and it will

become clear in §4 that neither do they affect their stability.
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4. Stability considerations
In this Section we investigate the stability of the wavetrains found in §3. Because

of the complexity of the algebra we confine ourselves to the solutions (3.1) for which
` = 0. The first step is to make perturbations to the wave amplitudes CN and CM as
follows:

CN = A0(1 + α) exp{iNγA2
0T1 + iθ}, (4.1a)

CM = ±λ1/2A0(1 + β) exp{iMγA2
0T1 + iψ}. (4.1b)

Then substituting (4.1) into the evolution equations (2.20), linearizing and taking real
and imaginary parts, we obtain

θT1
− u(N,M)αXX − v(N,M)αY Y − 2p(N,M)A2

0α− 2λq(M,N)A2
0β = 0, (4.2a)

αT1
+ u(N,M)θXX + v(N,M)θY Y = 0, (4.2b)

ψT1
− u(M,N)βXX − v(M,N)βY Y − 2q(M,N)A2

0α− 2λp(M,N)A2
0β = 0, (4.2c)

βT1
+ u(M,N)ψXX + v(M,N)ψY Y = 0. (4.2d)

We shall assume plane wave perturbations, so that α
θ
β
ψ

 =

 α
θ
β
ψ

 exp{i(δX + ηY )− iκT1}. (4.3)

Then substituting into (4.2) we obtain a set of equations which can only be consistent
if the following determinant vanishes:∣∣∣∣∣∣∣

κ, P1, 0, 0
P1 − 2p(N,M), κ, −2λq(M,N), 0

0, 0, κ, P2

−2q(M,N), 0, P2 − 2λp(M,N), κ

∣∣∣∣∣∣∣ . (4.4)

In (4.4), the quantities P1 and P2 are defined as

P1 = u(N,M)δ2 + v(N,M)η2, P2 = u(M,N)δ2 + v(M,N)η2, (4.5)

and A0 has been eliminated by the scalings

κ→ A2
0κ, X → A0X, Y → A0Y .

On expanding (4.4), we obtain the following quartic equation for κ:

κ4 + Cκ2 + D = 0, (4.6)

C = −P 2
1 − P 2

2 + 2(p(N,M)P1 + λp(M,N)P2) (4.7a)

D = P1P2[(P1 − 2p(N,M))(P2 − 2λp(M,N))− 4λq2(M,N)]. (4.7b)

In addition we shall introduce the quantity ∆ = C2− 4D and a calculation yields that

∆ = {P1(P1 − 2p(N,M))− P2(P2 − 2λp(M,N))}2 + 16λq2(M,N)P1P2. (4.7c)

Clearly the waves will only be stable if all the roots of (4.6) are real and it is a
standard exercise to determine that this only happens if either C 6 0 and D = 0 or
C 6 0, D > 0 and ∆ > 0.

Because there are four parameters involved in the problem: M,N, V and ρ, it is
not easy to give any very general results on the stability of the waves. However,
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we first make some general observations and then determine the regions of stability
and instability for some particular cases. First note that for large values of the
wavenumbers δ and η of the perturbations we must have, in general C < 0, D > 0
and ∆ > 0 and hence stability is assured. This would seem unsurprising since a
perturbation with wavenumbers far from the main flow would not be expected to
lead to instability. It may be seen from (4.7) that the quantities which have an
important influence on the signs and zeros of C,D and ∆ are P1, P2 and λ. The zeros
of λ have already been discussed at the end of §3. An inspection of P2 shows that for
the quantity to have zeros in the (δ, η)-plane the factor

{(1 + ρV 2)(ρ− 3)− 8ρV }R2 − 2{(1 + ρV 2)(3 + ρ) + 4ρV }R + (1 + ρ)(1 + ρV 2), (4.8)

occurring in the numerator of u(M,N) must be positive (here R = M/N as before).
The coefficient of R2 in (4.8) may clearly be arranged to be positive or negative
according to the values of ρ and V . (Note, though, for it to be positive, V must
be negative and so the undisturbed flows must be in opposition.) Then obviously
when this term is positive, the quantity (4.8) is positive for sufficiently large R. Note
however, that (4.8) cannot be positive for R close to unity. For if we set R = 1 in (4.8),
it may be written as −8{(1 + ρV )2 + ρV 2(1 − ρ)} which is strictly negative. (It can
only be zero if ρ = 1 and V = −1, which case is specifically excluded.) We content
ourselves with a single numerical example: if V = −2 and ρ = 0.8 then (4.8) equals

3.56R2 − 19.12R + 7.56

which changes from negative to positive as R increases through 4.94.
Finally, we remark upon zeros of P1. In a similar way, the condition for P1 to have

zeros is that the term

((R2 − 6R − 3) + ρ(R − 1)2)(1 + ρV 2)− 8(R + 1)ρV (4.9)

(occurring in the numerator of u(N,M)) be positive. However this is quite easy to
arrange and indeed zeros of P1 will tend to be the rule rather than the exception. First
notice that if R > 3 + 2

√
3 (∼ 6.46) then R2 − 6R − 3 is positive and it thus suffices

to take V to be negative. However (4.9) can still be positive even if R is smaller than
this critical value. For instance if we set R = 2 and ρ = 0.9, then (4.9) is positive if V
lies between −4.51 and −0.247 and negative otherwise. On the other hand, if R = 2
and ρ = 0.2 then (4.9) is always negative. Note however, for R very close to unity,
(4.9) is always negative for the same reasons as those given in the discussion of P2.

We now present stability diagrams for some specific values of the parameters
involved. We first consider the case when ρ = 0.5 and V = 2. Different values of M
and N will be chosen to illustrate the different stability patterns which may occur.

(i) M = 19, N = 18, ρ = 0.5, V = 2
In this case a calculation reveals that P1 and P2 are both negative, while λ and

hence ∆ (by 4.7c) are positive. Further, C is negative while a calculation shows that
the zeros of D form an ellipse-like curve depicted in figure 5(a). The quantity D is
negative inside the ellipse and positive outside. The conclusion is therefore that the
waves are unstable for perturbations with wavenumbers close to the origin and stable
otherwise.

(ii) M = 9, N = 7, ρ = 0.5, V = 2
In this case P1, P2, C and λ are all negative, while D and ∆ change sign. The

zeros of these quantities, together with an indication of the stability regions, are
depicted in figure 5(b). An inspection of this diagram shows that perturbations with
wavenumbers sufficiently close to the underlying flow are always unstable, no matter
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Figure 5. The stability regions for various values of the parameters. In all cases regions of
stability are denoted by S and regions of instability by U.
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what their direction may be. In addition, there is a second unbounded region of
instability which includes some perturbations in the same direction as the flow, but
none at right angles to it.

(iii) M = 13, N = 6, ρ = 0.5, V = 2
In this case P1, P2, C and λ are always negative, while D is positive. The only quantity

to change sign is ∆, the zeros of which are depicted in figure 5(c), together with the
stability implications. We see that the waves are always stable to perturbations
transverse to the wave; whereas longitudinal perturbations are stable or unstable
according to their wavenumber.

(iv) M = 13, N = 4, ρ = 0.5, V = 2
None of the relevant quantities changes sign in this case: P1, P2 and C are always

negative; D, λ and hence ∆ are always positive. The waves are therefore always stable.
We now present some stability results when M,N and ρ are held fixed, but for

different values of V . We shall choose values of V to illustrate representative cases:
one when neither P1 nor P2 changes sign; one when just one of them does, and one
when they both do.

(v) M = 19, N = 6, ρ = 0.8, V = 0.5
Here P1, P2 and C are always negative, while D is always positive. The zeros of ∆,

and associated stability implications are depicted in figure 5(d). It may be seen that
the waves are unstable to perturbations with wavenumbers close to the origin, while
if the wavenumbers are further away the waves are stable to perturbations which are
purely longitudinal or transverse and the region of unstable oblique wavenumbers
becomes narrower (but is unbounded).

(vi) M = 19, N = 6, ρ = 0.8, V = −2
In this case P2 is always positive while all other quantities change sign and their

zeros are depicted in figure 5(e), which also shows the regions of stability. Although
figure 5(e) may appear somewhat complicated, a careful inspection reveals that,
broadly speaking, the waves are unstable if the wavenumbers of the perturbations are
close to the origin while they are stable if they are further away, with the exception
of two unbounded regions of instability.

(vii) M = 19, N = 6, ρ = 0.8, V = −1
For these values of the parameters, all three of C,D and ∆ change sign and the

zero set of D is particularly complicated since P1 and P2 both change sign. The zeros
of the various quantities and associated stability regions are depicted in figure 5(f).
An inspection of this figure then shows that the waves are stable if the perturbations
are purely transverse to the wave no matter what their wavenumber may be, while
perturbations purely longitudinal to the wave are unstable if the wavenumbers are
sufficiently small and stable otherwise. Further, oblique perturbations are stable
or unstable according to the precise position of their wavenumbers in the plane.
Perturbations with wavenumbers far from the origin tend to be stable, although there
are three unbounded regions of instability.

5. Conclusions
We have carried out an investigation into the small-amplitude ripples which arise

on the interface of two semi-infinite stratified fluids and which are caused by the
interaction of the Mth and Nth harmonics of the fundamental mode. Our results
are valid for all values of M and N except M = 2N and M = 3N. A pair of
coupled nonlinear partial differential equations which model, up to cubic order, the
evolution of the waves has been derived. These are generalizations of the nonlinear
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Schrödinger equation which has been extensively used to describe other types of wave
evolution. The equations were solved and used to obtain formal series expansions
for the wave profiles, in powers of the wave steepness. A very large number of wave
profiles are possible and certainly, for given values of M and N, both symmetric and
asymmetric waves may be observed. Four parameters are present in the problem:
as well as M and N there are occurrences of V , which is a measure of the ratio
of the fluid velocities, and ρ which is the density ratio of the fluids. There are two
factors which have a strong influence on the character of the waves. One is whether
M is greater or less than 2N. The other is the value of the quantity ρV 2 which
may be thought of as a sort of ‘generalized velocity’. We note that if ρV 2 ∼ 0
then only one of ρ or V 2 need be near zero so this may be physically interpreted
either as ‘very light fluid on the top’ or ‘slow relative velocity’; but if ρV 2 � 1
then, since 0 6 ρ 6 1, the only realistic physical interpretation of this is ‘very
fast relative velocity’. However when V is very small or very large the difference
between the velocities is large, so we might describe both these cases generically
as ‘strong shear’. (Note that when V = 1, the undisturbed flows are equal.) If
we confine ourselves to Stokes-wave-type solutions which are functions of the slow
time only, then we have shown that, if M < 2N, the waves are asymmetric for
strong shear and symmetric for an intermediate range of value of ρV 2, whereas
the conclusions are reversed if M > 2N. The results for ρV 2 ∼ 0 are the same as
those contained in Jones (1994a) which dealt with capillary–gravity waves in an open
channel and under constant atmospheric pressure. (The case ρ = 0 corresponds to
surface waves, of course.) This is unsurprising, of course, since we would not expect
a very light or slow-moving upper fluid to exert a dramatic effect. The reason for
the observations in the other cases could be that a very fast-moving upper fluid
might not be expected to have much effect on the lower one while a fluid which
moves with only moderate speed could have a strong effect at the interface. Our
investigations have shown that the 1:2 mode interaction is a particularly important
one. Thus although not considered in this paper, this case would seem to merit
further study, as would the 1:3 mode interaction. Indeed in the surface wave case
these resonances are among the most observable, see Hammack & Henderson (1993).
In fact some work on such problems has already been carried out by Bontozoglou
& Hanratty (1990) and Christodoulides & Dias (1994) who used a Lagrangian
formulation to consider stratified waves and Chossat & Dias (1995) who considered
second-harmonic resonances in more general physical settings. It would be of great
interest to extend their analyses to the resonant waves which have been the subject
of this report.

Having discussed the types of waves which may occur, we proceeded to study their
stability to plane wave perturbations. Naturally, the stability properties of the waves
were shown to depend on the particular values of the parameters chosen. However,
in general, perturbations with wavenumbers far from the main flow tend to have less
of an effect on stability than perturbations with wavenumbers close to it. This is
in accord with physical expectations since we would expect energy to be transferred
more easily between modes whose wavenumbers are close to each other. In some cases
the waves are stable to all perturbations with wavenumbers far from the main flow,
but in others there are unbounded regions of instability, some of whose boundaries
become asymptotically close as the wavenumbers of the perturbations move away
from the origin, while others do not. Another observation gained from a perusal of
the stability diagrams is that longitudinal perturbations tend, in the main, to be more
unstable than transverse ones. Again this is physically reasonable, for one would
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expect an interaction to arise more easily from two wavetrains moving in the same
direction rather than from two which are at right angles.

The results presented here are only valid in the case of small-amplitude waves. An
interesting and obvious area of further work would be to try and obtain results valid
for finite-amplitude waves, either by rigorous or numerical methods, rather as Zhang
& Melville (1987) did for open channel capillary–gravity waves.

I thank the referees for their excellent, detailed and constructive criticism.
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